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Abstract. We derive the spectral representations of QED 3-point functions and then explicitly calculate
the 3-point spectral densities in hard thermal loop approximation within the real time formalism. The
Ward identities obeyed by the retarded and advanced 2- and 3-point functions are discussed. We compare
our results with those for hot QCD.

1 Introduction

Spectral densities are important quantities in finite tem-
perature field theory [1,2]. But they are not easy quan-
tities to evaluate perturbatively at nonzero temperature,
especially for many-point spectral densities. The two-point
spectral densities have been widely studied and applied to
QGP studies [3–9]. In [7] the Cutkosky rules for calculat-
ing the imaginary parts of thermal Green functions us-
ing the formalism of Thermo-Field Dynamics (TFD) were
presented. Recently these cutting rules were reexamined
within the Closed Time Path (CTP) formalism [10,11] and
given a simple physical interpretation [12]. The imaginary
time cutting rules for calculating two-point spectral densi-
ties were investigated in [6]. Three-point spectral densities,
on the other hand, have so far received less quantitative
attention. The only available calculation for gauge theo-
ries is published in [13] where the 3-point spectral densi-
ties for pure gluon dynamics were calculated in the Hard
Thermal Loop (HTL) approximation using the imaginary
time formalism (ITF) [14]. The spectral representation of
three-point functions for selfinteracting scalar fields were
discussed in [15–18].

Hard Thermal Loops (HTLs) are gauge invariant and
satisfy simple abelian Ward identities [14]. These remark-
able properties have triggered many interesting investi-
gations [19–24]. The computation oh HTLs is generally
fairly technical because of their complicated momentum
and energy dependence, but it can be simplified by using
the Ward identities [14,25]. All HTLs can be derived from
a generating functional based on an effective Lagrangian
[19]. They describe classical aspects of hot field theories
and can thus also be obtained from classical kinetic equa-
tions [26,23,24]. However, as Taylor stated in [13], for
many purposes one does not need the HTL amplitudes
themselves, but only their discontinuities which are de-

scribed by spectral densities. These spectral densities also
provide a natural connection between the Green functions
in the real time formulation (RTF) of thermal field theory
and the ITF. While the HTL resummation method was de-
veloped within the imaginary time formalism (ITF), with
primary attention focussed on equilibrium properties of
hot field theories, realistic physical systems are frequently
out of thermal equilibrium and require calculations in real
time. Recently this has motivated increased interest in the
real time formulation of thermal field theories and its non-
equilibrium extensions.

In the present paper we therefore study the spectral
functions and Ward identities for finite temperature QED
in the real time formalism (RTF). Extending the recently
derived, completely general spectral representation of the
real-time 3-point vertex function at finite temperature
from scalar field theory to the case of QED, we then
show how to implement the HTL approximation in real
time. As shown in [27], for 2-point functions this proce-
dure allows for a simple generalization of the HTL re-
summation scheme to general non-equilibrium situations.
Within the HTL approximation we evaluate explicitly the
3-point spectral densities and derive a set of finite temper-
ature Ward identities between the real-time 2- and 3-point
functions. Although one needs in general two independent
spectral densities to describe the real-time 3-point vertex
at finite temperature [17,18], the two are shown to become
degenerate in the HTL approximation. This agrees with
previous findings in [13,23]. Our Ward identities between
the real-time Hard Thermal Loops in QED also agree with
the general real-time finite temperature Ward identities
recently derived in [28].

Throughout this paper we will use the CTP formalism
[10] in the form given in [11,17]. In this representation of
the real-time formalism the bosonic single-particle propa-
gator in momentum space has the form
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D(p) =
(

D11 D12
D21 D22

)
(1)

with

i D11(p) = (i D22)
∗

= iP
(

1
p2 − m2

)
+

(
n(p0) +

1
2

)
ρ(p) , (2a)

i D12(p) = n(p0) ρ(p) , (2b)
i D21(p) =

(
1 + n(p0)

)
ρ(p) . (2c)

Here n(p0) is the thermal Bose-Einstein distribution,

n(p0) =
1

eβp0 − 1
, (3)

and ρ(p) is the two-point spectral density which for free
particles is given by

ρ(p) = 2π sgn(p0) δ(p2 − m2) . (4)

The fermionic 2 × 2 propagators are given by

Sab(p) = (6p + m)S̃ab , (a, b = 1, 2) , (5)

with

i S̃11(p) =
(
i S̃22

)∗

= iP
(

1
p2 − m2

)
+

(
−ñ(p0) +

1
2

)
ρ(p) , (6a)

i S̃12(p) = −ñ(p0) ρ(p) , (6b)

i S̃21(p) =
(
1 − ñ(p0)

)
ρ(p) . (6c)

Here ñ(p0) is the thermal Fermi-Dirac distribution,

ñ(p0) =
1

eβp0 + 1
, (7)

and for free fermions ρ(p) is again given by (4).
The paper is organized as follows. In Sect. 2 we derive

the spectral representations for the retarded 3-point func-
tions in QED. In Sect. 3 we evaluate the 3-point spectral
densities for QED in the HTL approximation. In Sect. 4
we derive the RTF Ward identities between the 2- and 3-
point HTL amplitudes in QED. A short summary is given
in Sect. 5.

2 Spectral representation
of the 3-point vertex in QED

In this Section we shortly review some useful relations
among the different thermal components of the QED 3-
point functions and derive their spectral representation.
Similar relations for the 3-point vertex in φ3 theory have
been reported in the literature [7,15,16] in different nota-
tion. Our procedure here follows the notation developed
in [18] for φ3 theory. We consider the 3-point vertex func-
tion in QED shown in Fig. 1. The three incoming external
momenta are k1 = p, k2 = q, and k3 = −p − q.

p

q

s

s+q

s-p

-p-q

a

b c

µ

Fig. 1. 3-point vertex in QED

Within the real time formalism, the truncated three-
point function for QED, Gµ

abc(x, y, z), has eight thermal
components which satisfy [7,10]

2∑
a,b,c=1

Gµ
abc = 0 . (8)

Using the KMS condition one finds in momentum space
[30]

G̃µ
111(k1, k2, k3) = −Gµ∗

111(k1, k2, k3)
= Gµ

222(k1, k2, k3) , (9a)

G̃µ
121(k1, k2, k3) = −Gµ∗

121(k1, k2, k3)

= −eβω2 Gµ
212(k1, k2, k3) , (9b)

G̃µ
211(k1, k2, k3) = −Gµ∗

211(k1, k2, k3)

= −eβω1 Gµ
122(k1, k2, k3) , (9c)

G̃µ
112(k1, k2, k3) = −Gµ∗112(k1, k2, k3)

= eβω3 Gµ
221(k1, k2, k3) , (9d)

where G̃µ represents “tilde conjugation” of Gµ (see [18]).
Note that in (9b,9c) the last equation involves an addi-
tional minus sign relative to the scalar case [18], due to
the fermionic legs.

One can construct “retarded” vertex functions from
the above eight thermal components according to

Gµ
R = Gµ

111 + Gµ
112 + Gµ

211 + Gµ
212, (10a)

Gµ
Ri = Gµ

111 + Gµ
112 + Gµ

121 + Gµ
122, (10b)

Gµ
Ro = Gµ

111 + Gµ
121 + Gµ

211 + Gµ
221, (10c)

where Gµ
Ri is the vertex function which in coordinate space

is retarded with respect to x0, Gµ
Ro is retarded with re-

spect to z0, and Gµ
R is retarded with respect to y0. The legs

linked to x, y, z correspond to an electron, electron, and
photon, respectively, and the corresponding distribution
functions are ñ1 = ñ(ω1), ñ2 = ñ(ω2), and n3 = n(ω3).
Inversion of (10) with the help of (8) (9) yields expres-
sions for the thermal components Gµ

abc in terms the above
retarded functions:
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Gµ(k1, k2, k3) = Gµ
R

(
ñ1

1 − ñ1

)(
1

−1

)( −n3

1 + n3

)

−1
2
Gµ∗

R (N1 + N3)
(

1
−1

)(
ñ2

1 − ñ2

)(
1

−1

)

+Gµ
Ri

(
1

−1

)(
ñ2

1 − ñ2

)( −n3

1 + n3

)

−1
2
Gµ∗

Ri(N2 + N3)
(

ñ1

1 − ñ1

)(
1

−1

)(
1

−1

)

+Gµ
Ro

(
ñ1

1 − ñ1

)(
ñ2

1 − ñ2

)(
1

−1

)

−1
2
Gµ∗

Ro(N1 + N2)
(

1
−1

)(
1

−1

)( −n3

1 + n3

)
, (11)

with N1 = 1 − 2ñ1, N2 = 1 − 2ñ2, and N3 = 1 + 2n3. The
structure of this equation is similar to (35) in [17]; the sign
differences arise from additional minus signs in front of
the Fermi distributions and from the fact that (11) refers
to the truncated vertex rather than the connected vertex
studied in [17].

Following the same procedure as in Appendix A2 of
[18] one derives the following spectral integral representa-
tion for the retarded 3-point functions in QED:

Gµ
R(ω1, ω2, ω3) =

−i

2π2

∫ ∞

−∞

dΩ1dΩ2

ω2 − Ω2 + iε
(12a)

×
(

ρµ
1

ω1 − Ω1 − iε
+

ρµ
1 − ρµ

2

ω3 − Ω3 − iε

)
,

Gµ
Ri(ω1, ω2, ω3) =

−i

2π2

∫ ∞

−∞

dΩ1dΩ2

ω1 − Ω1 + iε
(12b)

×
(

ρµ
2

ω2 − Ω2 − iε
− ρµ

1 − ρµ
2

ω3 − Ω3 − iε

)
,

Gµ
Ro(ω1, ω2, ω3) =

−i

2π2

∫ ∞

−∞

dΩ1dΩ2

ω3 − Ω3 + iε
(12c)

×
(

ρµ
1

ω1 − Ω1 − iε
+

ρµ
2

ω2 − Ω2 − iε

)
.

Here ω1 + ω2 + ω3 = Ω1 + Ω2 + Ω3 = 0 and the spatial
momenta p1, p2, p3= − (p1−p2) are the same on both
sides and have therefore been suppressed. The spectral
densities are given by the following thermal components
of the 3-point vertex in momentum space:

ρµ
1 = Im (Gµ

122 − Gµ
211) , (13a)

ρµ
2 = Im (Gµ

212 − Gµ
121) . (13b)

One notes that the spectral representations for the trun-
cated QED three-point functions have the same form as
in scalar φ3 theory [18], except for the additional vector
index.

3 Evaluation of the spectral densities
in HTL approximation

In this Section we calculate the three-point spectral func-
tions ρµ

1 , ρµ
2 for QED in the hard thermal loop approxima-

tion [14]. Since HTLs are gauge invariant we can choose
Feynman gauge for simplicity.

From (9) and (13) we have

ρµ
1 = Im (Gµ

122 − eβp0G∗µ
122) =

1
ñ(p0)

Im Gµ
122 . (14)

For ρµ
1 we thus must evaluate only the single Feynman

diagram in Fig. 1 for a = 1, b = c = 2. Using standard
real-time Feynman rules [10] and the photon propagator
in Feynman gauge one gets

Gµ
122(p, q,−p − q) = (−ig)(ig)2

∫
d4s

(2π)4
[iD12(s)] γα (15)

× [iS22(s + q)] γµ [iS21(s − p)] γα .

Inserting the thermal free propagators (2)-(7) and extract-
ing the imaginary part one finds

ImGµ
122 =−g3

∫
d4s

(2π)4
[γα (6s − 6p + m) γµ (6s + 6q + m) γα]

×δ
(
s2) δ

(
(s + q)2 − m2

)
δ
(
(s − p)2 − m2

)
×sgn(s0)sgn(s0 + q0)sgn(s0 − p0)n(s0)
× ( 1

2 − ñ (s0 + q0)
)
(1 − ñ (s0 − p0)) (16)

If the coupling constant g is small and the external
momenta are soft, p, q ∼ gT , and the electron bare mass
m is much smaller than the temperature, the leading con-
tributions comes from the hard loop momenta s ∼ T [4,
14]. For these we can thus neglect the external momenta
and the mass m in the terms between square brackets, ap-
proximating them by γα 6sγµ 6sγα = −4sµ 6s + 2γµs2. After
performing the integration over s0 with the help of the
function δ(s2) = [δ(s0 − s̄)+δ(s0 + s̄)]/2s̄, where s̄ =

√
s2,

one finds

ρµ
1 (p, q,−p − q)

=
g3

n(p0)

(
Aµ(p, q) + Bµ(p, q)

)
, (17a)

Aµ(p, q)

=
∫

d3s

(2π)
1
2s̄

sgn(s̄ + q0) sgn(s̄ − p0)4sµ 6s|s0=s̄

×δ
(
(s̄ + q0)

2 − E2
s+q

)
δ
(
(s̄ − p0)

2 − E2
s−p

)

×n(Es)
( 1

2 − ñ (s̄ + q0)
)
(1 − ñ (s̄ − p0)) , (17b)

Bµ(p, q)

= −
∫

dn−1s

(2π)n−3

1
2s̄

sgn(s̄ − q0) sgn(s̄ + p0)4sµ 6s|s0=−s̄

×δ
(
(s̄ − q0)2 − E2

s+q

)
δ
(
(s̄ + p0)2 − E2

s−p

)
×(

n(−s̄)
) (

1
2 − ñ(−s̄ + q0)

)
ñ(s̄ + p0) . (17c)

Here Es+q =
√

m2 + (s + q)2, Es−p =
√

m2 + (s − p)2,
and in (17c) we used the identity n(−x) + n(x) = −η,
η = ±1 for bosons and fermions.
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To simplify the notation it is convenient to introduce
the 4-vectors V± =

(
1,± s

s̄

)
. For hard loop momenta the

arguments of the δ-functions in (17) can then be written
as

(s + q)2
∣∣
s0=±s̄

≈ ±2s̄ q · V± = ±2s̄
(
q0 ∓ |q| cos θ′) ,(18a)

(s − p)2
∣∣
s0=±s̄

≈ ∓2s̄ p · V± = ∓2s̄
(
p0 ∓ |p| cos θ

)
, (18b)

and we can replace sgn(s̄ ± p0) ≈ 1 ≈ sgn(s̄ ± q0) under
the integral. θ and θ′ are the angles between s and p,q,
respectively. These approximations decouple the angular
and radial integrations [14]; we obtain

Aµ(p, q) ≈ a(p0) ωµ(p, q) , (19a)
Bµ(p, q) ≈ b(p0) ωµ(p, q) , (19b)

a(p0) =
1
2π

∫ ∞

0
ds̄

4s̄4

(2s̄)3
n(s̄)

× ( 1
2 − ñ (s̄ + q0)

)
(1 − ñ (s̄ − p0)) , (19c)

b(p0) = − 1
2π

∫ ∞

0
ds̄

4s̄4

(2s̄)3
n(−s̄)

× ( 1
2 − ñ (−s̄ + q0)

)
(ñ (s̄ + p0)) , (19d)

ωµ(p, q) =
∫

dΩ V µ
+ 6V + δ(q · V+) δ(p · V+)

=
∫

dΩ V µ
− 6V − δ(q · V−) δ(p · V−) . (19e)

Except for the additional spinor structure the angular in-
tegral (19e) is identical with the one found by Taylor [13]
for the spectral density of the 3-gluon vertex in hot QCD.

The integrands in (19c,19d) contain up to three powers
of thermal distribution functions. By using the following
identities

n(ω1)ñ(ω2) = ñ(ω1 + ω2)(1 + n(ω1) − ñ(ω2)) , (20a)
ñ(ω1)ñ(ω2) = n(ω1 + ω2)(1 − ñ(ω1) − ñ(ω2)), (20b)

one shows that the cubic terms disappear and that a and
b reduce to

a(p0) =
1
4π

∫ ∞

0
ds̄ s̄

(
1
2 ñ(p0) [n (s̄) + ñ (s̄ − p0)]

−n(p0 + q0)
[
ñ(−q0) [n(s̄) + ñ (s̄ + q0)]

−ñ(p0)[n(s̄) + ñ(s̄ − p0)]
])

, (21a)

b(p0) =
1
4π

∫ ∞

0
ds̄ s̄

(
1
2 ñ(p0) [n(s̄) + ñ(s̄ + p0)]

−n(p0 + q0)
[
ñ(−q0) [n (s̄) + ñ(s̄ − q0)]

−ñ(p0)[n(s̄) + ñ(s̄ + p0)]
])

, (21b)

The remaining integrands are linear in the s̄-dependent
thermal distribution functions [31,18].

After evaluating the integral over s̄ in the limit p0/T �
1, q0/T � 1 we obtain to leading order in the coupling
constant g

ρµ
1 (p, q) =

g3

ñ(p0)
(Aµ(p, q) + Bµ(p, q))

≈ gm2
βπ

2

∫
dΩ V µ

+ 6V + δ(q · V+) δ(p · V+)

=
gm2

βπ

2

∫
dΩ V µ

− 6V − δ(q · V−) δ(p · V−) . (22)

Here mβ = gT√
8

is the thermal electron mass.
The other spectral density ρ2 is determined from

ρµ
2 =

1
ñ(q0)

Im Gµ
212 . (23)

By inspection of the corresponding labelling of the dia-
gram in Fig. 1 one observes that G212(p, q,−p − q) is ob-
tained from G122(p, q,−p−q) by exchanging the two elec-
tron legs with the external momenta p and q and routing
the internal momentum s in the opposite direction. The
resulting loop integral then becomes identical to the one
before, (15), and we find

ρµ
2 (p, q) ≈ ρµ

1 (q, p) ≈ ρµ
HTL

(p, q) , (24a)

ρµ
HTL

(p, q) ≈ gm2
βπ

2

∫
dΩ V µ

+ 6V + δ(p·V+) δ(q·V+) . (24b)

This agrees with the observation by Taylor in [13] that
within QCD in HTL approximation the two independent
spectral densities for the 3-gluon vertex degenerate.

Considering the δ-functions in (24) one easily shows
that

pµρµ
HTL

(p, q) = 0 = qµρµ
HTL

(p, q) , (25)

i.e. in HTL approximation the QED spectral density is
transverse with respect to the external momenta. This nice
feature was also noted in [13] for hot QCD.

4 Real-time ward indentities
among hard thermal loops

Let us insert the above spectral densities into the spectral
representations for the retarded 3-point functions:

Gµ
R(ω1, ω2, ω3)

= −ig
m2

β

4π

∫
dΩ

V µ
+ 6V +

(V+ · k1 − iε)(V+ · k2 + iε)
, (26a)

Gµ
Ri(ω1, ω2, ω3)

= −ig
m2

β

4π

∫
dΩ

V µ
+ 6V +

(V+ · k1 + iε)(V+ · k2 − iε)
, (26b)

Gµ
Ro(ω1, ω2, ω3)

= ig
m2

β

4π

∫
dΩ

V µ
+ 6V +

(V+ · k1 − iε)(V+ · k2 − iε)
. (26c)

The QCD-analogue of last two expressions were previously
obtained by Blaizot and Jancu [23] from a set of classical
kinetic equations. If the external momenta are of order
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gT , p1 ∼ p2 ∼ gT , power counting reveals that all three
retarded 3-point functions are of order g, i.e. of the same
order as tree vertex. The HTLs (26) for the QED 3-point
vertex in the real time formalism thus require resumma-
tion within perturbation theory, like the corresponding
HTLs in the imaginary time formalism [14,5].

In the next step we derive the real-time analogue of the
well-known Ward identities between the HTL amplitudes
in the ITF formalism [25,19]. Due to the matrix struc-
ture of the real-time thermal Green functions, the Ward
identities also become matrix equations.

The zero temperature Ward identities for QED can be
written both in differential and in integrated form [29]:

∂S(p)
∂pµ

=
i

g
S(p) Γµ(p, −p, 0) S(p) , (27)

or

g (S(p′) − S(p))
= i S(p)

[
(p′ − p)µ

Γµ (p, −p′, p′ − p)
]
S(p′) . (28)

Multiplying by S−1(p) from the left and by S−1(p′) from
the right and using the Schwinger-Dyson equation

S−1(p) = 6p − m − Σ(p) , (29)

the Ward identity takes the form

(p′ − p)µGµ(p, −p′, p′ − p) = −ig [Σ(p′) − Σ(p)] , (30)

where Gµ is the vertex correction from loop diagrams,
defined by Gµ = Γµ − Γ 0

µ , with Γ 0
µ = igγµ.

At finite temperature the propagators and vertices
have matrix structure. The generalization of (30) to fi-
nite temperature in the real time formalism was recently
performed in [28]. The authors of this paper used a differ-
ent version of the real time formalism and considered the
vertex with the photon attached to the ingoing leg; trans-
lated into the CTP framework and for the vertex with the
photon on the outgoing leg their result reads:

(p′ − p)µ Gµ
abc (p, −p′, p′ − p)

= −ig [δbcΣac(p′) − δacΣcb(p)] , (31)

where a, b, c = 1, 2. This can be rewritten in terms of the
retarded and advanced amplitudes; the result agrees with
what we find for the HTL amplitudes below.

In order to examine the relations among the 2- and
3-point HTLs in the real time formalism, we calculate the
retarded electron self-energy [11]:

ΣR(p) = g2
∫

d3k
(2π)3

∫
dω dω′ ρf (ω,p + k) ρB(ω′,k)

×
(

n(ω′) + ñ(ω)
p0 + ω′ − ω + iε

)
, (32)

where ρF and ρB are the two-point spectral densities of
the fermions and bosons, respectively. Inserting the free
particle spectral densities

ρB(ω′,k) = sgn(ω′) δ(ω′2 − E2
k) ,

ρF (ω,p + k) = (ωγ0 + k′ · γ + m)
×sgn(ω) δ(ω2 − E2

p+k) , (33)

with Ek =
√

k2, E′
k =

√
k′2 + m2, k′ = k + p, and evalu-

ating the integral in the HTL approximation using dimen-
sional regularization [32], we obtain

ΣR(p) = a(p)6p + b(p)γ0 , (34)

where

a(p0,p) =
m2

β

p2

(
1 − p0

4π

∫
dΩ

1
V+ · p + iε

)
,

b(p0,p) =
m2

β

p2

(
p0 +

p2

4π

∫
dΩ

1
V+ · p + iε

)
. (35)

Here V+ = (1,V),V = k
|k| , and the integration is over the

direction of the unit vector V. Some further algebra then
leads directly to

ΣR(p) =
m2

β

4π

∫
dΩ

6V +

V+ · p + iε
. (36)

The advanced electron self-energy in HTL approximation
is computed similarly as

ΣA(p) =
m2

β

4π

∫
dΩ

6V +

V+ · p − iε
. (37)

From this one obtains

ΣR(p′) − ΣR(p)

= −m2
β

4π

∫
dΩ

V+ · (p′ − p) 6V +

(V+ · p + iε)(V+ · p′ + iε)
, (38a)

ΣR(p′) − ΣA(p)

= −m2
β

4π

∫
dΩ

V+ · (p′ − p)6V +

(V+ · p − iε)(V+ · p′ + iε)
. (38b)

ΣA(p′) − ΣA(p)

= −m2
β

4π

∫
dΩ

V+ · (p′ − p)6V +

(V+ · p − iε)(V+ · p′ − iε)
. (38c)

If we set in (26) k1 = p, k2 = −p′, k3 = p′ − p and then
compare it with (38) we find the following relations be-
tween the hard thermal loop contributions to the 2- and
3-point functions:

(p′ − p)µGµ
Ri(p, −p′, p′ − p)

= −ig[ΣR(p′) − ΣR(p)] , (39a)
(p′ − p)µGµ

R(p, −p′, p′ − p)
= −ig[ΣA(p′) − ΣA(p)] , (39b)

(p′ − p)µGµ∗
Ro(p, −p′, p′ − p)

= −ig[ΣA(p′) − ΣR(p)] . (39c)

These relations are structurally similar to the zero temper-
ature Ward identity (30) and agree (up to notational dif-
ferences) with the general finite temperature Ward iden-
tities in RTF given in (3.17) of [28].
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5 Conclusions

We studied the QED 3-point vertex function at finite tem-
perature in the CTP real-time formalism. This formalism
has recently gained increased popularity because it allows
for a generalization to non-equilibrium situations as en-
countered, e.g., in the initial stages of heavy-ion collisions,
and it avoids the need for analytical continuation which
plagues the imaginary time formalism. We started by giv-
ing a set of useful relations among the eight thermal com-
ponents of the real-time vertex function. We then derived
spectral integral representations for the three retarded 3-
point functions and calculated the corresponding spectral
densities explicitly at 1-loop order in the HTL approxima-
tion. In this approximation the two independent spectral
densities become degenerate and are transverse with re-
spect to all three external momenta.

Inserting these HTL spectral densities into the spec-
tral representation we obtained three retarded 3-point ver-
tex functions, two of which turned out to be identical to
the corresponding QCD-analogues derived in [23] from a
set of classical kinetic equations in the long-wavelength
limit. By contracting the three 3-point vertex functions
with the momentum vector of the photon, we obtained a
result which we could compare with the fermion HTL self
energy. The result was a set of real-time Ward-Takahashi
identities at finite temperature which generalize the zero
temperature Ward identity and agree with the recently
derived finite temperature identities of [28].

Due to the matrix structure of the real-time thermal
Green functions, there is a whole class of finite tempera-
ture Ward identities which relate retarded and advanced
vertex functions to combinations of retarded and advanced
fermion self energies. As first observed by D’Olivo et al.
[28], if the ingoing (outgoing) fermion leg has the largest
time, the Ward identity involves only the retarded (ad-
vanced) fermion self energies; if the photon leg has the
largest time, both retarded and advanced fermion self en-
ergies are involved.

Clearly, no fundamentally new physical results were
derived in this paper; this was not our goal. What we have
achieved is a consistent real-time representation of the 2-
and 3-point functions in finite temperature field theory,
taking into account the full matrix structure arising from
the doubling of degrees of freedom, which makes their an-
alytic structure explicit and can thus serve as a basis for
non-perturbative resummation schemes at finite tempera-
ture. We have tested the consistency of the formalism in
the context of HTL resummation within thermal equilib-
rium QED. We expect the formalism to provide a stable
basis for an extension to the real-time dynamics of non-
equilibrium systems.
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(1997)
29. J.C. Ward, Phys. Rev. 77, 293 (1950); Y. Takahashi,

Nuovo Cimento 6, 340 (1957)
30. R. Kobes, Phys. Rev. D 42, 562 (1990)
31. R. Baier, B. Pire, D. Schiff, Z. Phys. C 51, 581 (1991); P.

Aurenche, E. Petitgirard, T.R. Gaztelurrutia, Phys. Lett.
B 297, 337 (1992)

32. H.A. Weldon, Phys. Rev. D 26, 1394 (1982)


